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• Single particle perspective

• Coherent motionplasma modes

• Effect of fast particles

• Case study: Bump-on-tail

• Generalisation to 3D world

• Outstanding problems
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Single particle perspective



• Static fields  constant particle energy (E)

• Weak spatial non-uniformity of field ”constant” 
magnetic moment (μ)

• Axisymmetry  constant toroidal angular 
momentum (pφ)

• Particles have finite excursion from flux surface 
due to driftsbounded orbits

Confinement: a first glance
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• Axisymmetry is an idealisation, e.g. Ripple effects 

• Broken symmetry can lead to loss of confinement

• In general the EM fields are not static...there are 
many charged particles moving around

• Microscopic time varying fields break invariants 
of motion and lead to loss of confinement

• These microscopic fields are the collisions which 
lead to diffusion of particles out of the tokamak

Confinement: more detailed
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Coherent motion



• Coherent motion leading to waves only occurs if 
the plasma current responds in the same was as 
the fields, e.g. 

• This only happens if the distribution of particles 
can be considered as stationary

• Not true in reality, but statistical description, i.e. 
continuous distribution function, allows this

• Good only when the plasma is sufficiently dense, 
need many particles per wavelength

Coherent plasma motion
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• Waves need energy

• Tokamak not in thermodynamic equilibrium

• Current and density gradient drive waves, e.g. 
Kink, ballooning modes, typically low frequency

• Another source of free energy in fast particles –
The waves are characterised by bulk plasma but 
are excited by the low density fast population

Coherent plasma motion
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Fast particle driven modes – Soft nonlinearity 
– TAEs via ICRH on JET
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MAST data

NSTX data

JET data

The ms timescale of 
these events is much 
shorter than the energy 
confinement time in the 
plasma

Fast particle driven modes – Rapid sweeping
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Fast particle driven modes – Mixed – Beam 
driven CAEs on MAST 
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Saturation of the neutron signal reflects anomalous losses 
of the injected beams. The losses result from Alfvénic activity.

Projected growth of
the neutron signal

Fast particle driven modes – Particle loss in TFTR

K. L. Wong et.al PRL 66, 1874 (1991)



• Coherent motion of plasma can have a much 
larger effect than collisions

• Effect of waves on confinement of particles 
cannot be universally predicted

• Each case must be dealt with separately

• We will focus on instabilities driven by fast 
particles in this lecture

Coherent plasma motion
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Effect of fast particles on waves



• How does a low density population produce a large effect

• How do the fast particles produce such rich non linear evolution 
at different timescales

• How is it that the same modes driven by different particles look 
so different

The Questions
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Heeter et.al PRL 85, 3177 (2000)

ICRH drive (TAE-JET) NBI drive (TAE-MAST)

Pinches et.al PPCF, 46, S47 (2004)



• Special group of particles that strongly interact 
with a wave

• v0=ω/k gives non oscillating force on particle 

• Provides a channel for energy to go from the 
source into the coherent motion of background 
not thermal motion

• Allows low density fast particles to pump/drive 
the wave

Resonance
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• System evolves through a threshold

• Collision times are comparable to growth times 

Marginal stability
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Case study: Bump-on-tail



Bump on tail - Basic ingredients
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• Particle injection and effective collisions, νeff, create an inverted 
distribution of energetic particles F0(v)

• Discrete spectrum of unstable electrostatic modes

• Instability drive, γL ~ dF0/dv, due to wave-particle resonance (ω-
kv=0)

• Background dissipation rate, γd, determines the critical gradient 
for the instability

v

F0
Critical slope
γL= γd

m(v-ω/k)

x

v=ω/k

Bω



Bump on tail - Basic ingredients
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• In wave frame the electric potential creates trapped and passing 
particles

• Separatrix is the trapped/passing boundary

• Motion in phase space is that of a pendulum with frequency 
determined by amplitude of field 

v

F0
Critical slope
γL= γd

m(v-ω/k)

x

v=ω/k
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2
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No dissipation or collisions – Schematic
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No dissipation or collisions – Schematic
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No dissipation or collisions – Schematic
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No dissipation or collisions – Schematic
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No dissipation or collisions – Schematic
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No dissipation or collisions – Schematic
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No dissipation or collisions – Schematic
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No dissipation or collisions – Saturation level
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• Wave grows until fast particle energy release cannot support the 
wave energy
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No dissipation or collisions – Saturation level
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No dissipation or collisions – Phase space 
plateaux
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• Distribution is only strongly perturbed inside 
separatrix (black line) 



Bump on tail – Key bits of physics

• Wave creates perturbations in velocity space 
around resonance

• Mixing area is bounded by the separatrix, 
determined by bounce frequency.  This separates 
trapped and passing particles

• Bounce frequency is on the order of γL

• γL is small compared to wave frequency, which
means the electric field is ”small” so that
perturbation of background is small which means
linear



• Linear cold background with sinusoidal field 

• Kinetic fast particle population

• Current from cold background obtained perturbatively using 
smallness of wave growth and dissipation

Bump on tail - formalism
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Collisionality – First glance
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• Marginal stability allows collisions to compete 
with mode growth

• Krook and diffusion have been studied

• Note: Krook is normally to mock up diffusion, but 
can actually be physical if collisions move particle 
immediately out of resonance (not typical in 
fusion conditions) 

eff~L dγ γ ν−

23 2
0

2 2 2
coll v v

FdF F
dt k

ν  ∂∂
= − ∂ ∂ 
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coll
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Near threshold ordering
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• Perturbative approach applied  time scales
shorter than non-linear bounce period of the
wave ωB

-1 2 ˆ /B ekE mω =

• Can be maintained indefinitely if collision
frequency is much larger than bounce frequency

• The distribution function will not be significantly
perturbed:

0 1 0 2,F f f f 
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Mode evolution equation - sign of cubic 
nonlinearity
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• First term leads to exponential growth, we must have a
negative second term to have saturation.

•Minus sign must persist for steady state
•For Krook and diffusion – Sign can only
flip for low collisionality

ν̂

β̂

- Diffusion coefficient

- Krook coefficient

Berk et.al PRL, 76, 1256 (1996)

Breizman et.al PoP, 4, 1559 (1997)



Collisionality affects mode saturation
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Collisionality affects mode saturation
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Collisionality affects mode saturation

© Imperial College LondonPage 48

ˆ
L d

νν
γ γ

=
−

Heeter et.al PRL, 85, 3177 (2000)



Collisionality affects mode saturation
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Collisionality affects mode saturation
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Heeter et.al PRL, 85, 3177 (2000)



• This was only a perturbative analysis (cubic order 
in E)

• Fully non-linear treatment requires numerical 
techniques

• Techniques should take advantage of separation 
of times scales                  i.e. Use BOT code: 
Fourier space code that runs in a couple of 
minutes on a laptop

• What happens in the explosive regime?

Collisionality affects mode saturation
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BREAK!



Marginal stability – No saturation
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/ 0.9d Lγ γ =

Frequency is changing for / 0.4d Lγ γ >



Marginal stability – Frequency chirping
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δω~√t

ωB~const.



Marginal stability – Frequency chirping
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δω~√t

ωB~const.



Marginal stability – Holes and clumps
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Spectral lines are holes and clumps in phase space



• Set                 to lowest 
order.  Correction from 
hole/clump will force 
other wave frequencies 
down/upholes/clumps 
naturally move apart

• Holes/clumps are the original resonant particles

• They are modulated beams/anti-beamslarge 
effect even with small density, since 

Marginal stability – Hole/clump dynamics
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• Set                 to lowest 
order.  Correction from 
hole/clump will force 
other wave frequencies 
down/upholes/clumps 
naturally move apart

• Holes/clumps are the original resonant particles

• They are modulated beams/anti-beamslarge 
effect even with small density, since 

Marginal stability – Hole/clump dynamics
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• Works for 

•  E is constant

• Hole or clump gets 
deeper/higher as it 
moves

• They move slowly compared to the bounce period

• Particles cant get inside separatrixwaterbag

• Trapped particles give most of 

Marginal stability – Hole/clump dynamics
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• Hole: energy is required to move particles up ~

• Energy released as particles are forced over ~

• They must move to balance dissipation

• Deeper holes release more energy  √t chirp

Marginal stability – Hole/clump dynamics
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• How does a low density population produce a large effect

• How does the plasma produce such rich non linear evolution at 
different timescales

• How is it that the same modes driven by different particles look 
so different

The Questions
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Heeter et.al PRL 85, 3177 (2000)

ICRH drive (JET) NBI drive (MAST)

Pinches et.al PPCF, 46, S47 (2004)



• Collisionality not low enough 
to explain MAST

• NBI distribution determined by 
drag for E~EA>>Ecrit

• Dynamical friction (drag) 
collisions should be included

• Could this explain the bursting 
for beam driven TAEs

Collisionality - Revisited
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Mode evolution equation – Effect of drag
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Near marginal stability the amplitude (A) of the unstable mode
evolves according to the following equation

ν̂

β̂

- Diffusion coefficient

- Krook coefficient

α̂ - Drag  coefficient

• Drag gives oscillatory behaviour, in
contrast to the Krook and diffusive cases.
•For drag – The oscillatory nature allows
the sign to flip often  don't need low
collisionality to get explosion
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Marginal stability - Diffusion + drag
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• For diffusion drag steady state solutions do exist
• For an appreciable amount of drag these solutions become
unstable (pitch fork splitting etc.)
• Explosive solutions again when drag dominates

Lilley et.al PRL, 102, 195003 (2009)



• Drag provides a preferred direction

• Expect asymmetry

• Holes move up in velocity

• Drag provides a flow, this 

acts like chirping

• Can drag replace chirping?

• i.e Can we get a steady state non-linear state 
away from the original resonance?

Fully nonlinear drag regime - expectations
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Pure drag
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Pure Drag – Holes Grow Faster, Clumps Decay

Lilley et.al PoP, 17, 092305 (2010)



• Drag collision operator has a slowing down force 
and a sink

• Slowing down + sink returns distribution to 
equilibrium

• E field however can hold the hole in place working 
against slowing down force

• Sink still acts to lower F  deeper hole over time

Pure drag – Growing holes
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Pure drag – Growing holes
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0~ gF Fδ ′

• Deeper hole  bigger E
2
B L B gδωω γ ω=
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• When drag dominates no steady state is possible
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Pure drag – Saturation without slope

Page 70 Remove slope and saturation is achieved



Now add some diffusion
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Drag + diffusion – Steady state hole
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Lilley et.al PoP, 17, 092305 (2010)



Add a bit more diffusion
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Drag + diffusion – Undulating frequency
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Lilley et.al PoP, 17, 092305 (2010)



Keep adding diffusion
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Drag + diffusion – Hooked frequency chirp
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JET (ICRH)
MAST (NBI)

BOT

• Hooked frequency 
chirp seen in BOT
• Also seen in MAST 
(NBI) and JET (ICRH)



Drag + diffusion – Hooked frequency chirp
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Hooks for the holes, clumps die sooner

Lilley et.al PoP, 17, 092305 (2010)



Drag Diffusion competition
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• Poisson Equation

• Diffusion fills, chirping 
and drag deepen

• Energy balance

3
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2
B

g g
t t

ν δω α
ω

∂ ∂
+ = +
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0-D Equations
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( )

2 1

1

yx y

xy y ya
x

τ

τ τ

∂ = + ∂ 
∂ ∂ + = + ∂ ∂ 

• x=y=1 is steady state

• Unstable for a<1

• Stable for a>1

Lilley et.al PoP, 17, 092305 (2010)
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Generalisation to toroidal 
systems



Toroidal systems – A first glance (low freq.)
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• Phase space resonance is more sophisticated

• Location of resonance varies

E

Pφ
Resonance
Motion across resonance
Motion due to wave

( ) ( ), , 0n P E p P Eϕ ϕ θ ϕω ω ωΩ ≡ − − =v 0u k ω≡ − = →

const.E p
n ϕ
ω

− =

Breizman et.al PoP, 4, 1559 (1997)

Chirikov Phys. Rep. 52 263 (1979)



Toroidal systems – Reduction to 1-D model 
(low freq.)
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• Particle motion along resonance does not lead to 
strange gradients in F, so neglect them  

• Need projection of motion and collisions across 
resonance

E

Pφ
Resonance
Motion across resonance
Motion due to wave

const.E p
n ϕ
ω

− =

Breizman et.al PoP, 4, 1559 (1997)

Chirikov Phys. Rep. 52 263 (1979)



Toroidal systems – Reduction to 1-D model 
(low freq.)
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• Transform to coordinates that straighten resonance

• Motion across the resonance 1-D for given E and μ

• Must integrate over all E and μ to get the result

© Imperial College LondonE

Ω Resonance

Motion across resonance
Motion due to wave

( ) ( ), , 0n P E p P Eφ φ θ φω ω ωΩ ≡ − − =

0

Breizman et.al PoP, 4, 1559 (1997)

Chirikov Phys. Rep. 52 263 (1979)



• How does a low density population produce a large effect

• How does the plasma produce such rich non linear evolution at 
different timescales

• How is it that the same modes driven by different particles look 
so different

The Questions
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Heeter et.al PRL 85, 3177 (2000)

ICRH drive (JET) NBI drive (MAST)

Pinches et.al PPCF, 46, S47 (2004)



Experimental estimate for MAST and ITER
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Remaining tasks...not exhaustive!
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• 1D model: Can we understand more about 
why marginal stability seeds holes & clumps

• 1D model: Extending to high frequency 
involving cyclotron resonance

• 3D world: Put drag into fully toroidal codes to 
look at TAEs – now being done in HAGIS

• 3D world: Experimentally scan parameter 
space – needed to predict ITER operation



Conclusions
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• Waves are important

• Resonance empowers the fast particles

• Marginal stability produces surprising route to 
energetic particle modes

• Plenty of non linear scenarios enriched by 
collisions

• Drag provides destabilising effect and gives 
an important observed asymmetry

• 1D model is good: for single resonance only



BOT Code
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• Email bumpontail@gmail.com from your work 
email

• Please give your name, institution and your 
position

• It is free for you to use, modify and also 
distribute, but I encourage others to contact 
me for the code so that I can send updates as 
they become available
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